The multiplier algebra of a convolution measure algebra

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Raikov Convolution Measure Algebra

What follows is propaganda for the study of a particular commutative Banach algebra, A one not inappropriate to a conference which emphasises automatic continuity. In fact A is that subalgebra of the measure algebra, .i\J(T), of all regular bounded Borel measures on the circle under the total variation norm and convolution multiplication, which is characterised by the automatic continuity of me...

متن کامل

The Multiplier Algebra of a Nuclear Quasidiagonal C-algebra

We give the nuclear analogue of Dadarlat’s characterization of exact quasidiagonal C∗-algebras. Specifically, we prove the following: Theorem 0.1. Let A be a unital separable simple C∗-algebra. Then the following conditions are equivalent: i) A is nuclear and quasidiagonal. ii) A has the stabilization principle. iii) If π : A → M(A ⊗ K) is a unital, purely large ∗-homomorphism, then the image π...

متن کامل

On the Multiplier of a Lie Algebra

Under fairly general conditions, we extend the 5-sequence of cohomology for nilpotent Lie algebras a step further. We then derive some consequences of the construction.

متن کامل

The Measure Algebra as an Operator Algebra

Introduction. In § I, it is shown that M(G)*, the space of bounded linear functionals on M(G), can be represented as a semigroup of bounded operators on M(G). Let A denote the non-zero multiplicative linear functionals on M(G) and let P be the norm closed linear span of A in M(G)*. In § II, it is shown that P , with the Arens multiplication, is a commutative J3*-algebra with identity. Thus P = ...

متن کامل

algebra and wreath product convolution

We present a group theoretic construction of the Virasoro algebra in the framework of wreath products. This can be regarded as a counterpart of a geometric construction of Lehn in the theory of Hilbert schemes of points on a surface. Introduction It is by now well known that a direct sum ⊕ n≥0R(Sn) of the Grothendieck rings of symmetric groups Sn can be identified with the Fock space of the Hei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1974

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1974.51.327